Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 18-25, 2023.
Article in Chinese | WPRIM | ID: wpr-984579

ABSTRACT

ObjectiveTo explore the mechanism of Buyang Huanwutang in regulating macrophage polarization based on the Toll-like receptor 4 (TLR4) / nuclear factor-κB (NF-κB) / nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) pathway. MethodRAW264.7 macrophages were intervened with lipopolysaccharide (LPS) of different concentrations (0, 1.25, 2.5, 5, 10, 20, 40, and 80 mg·L-1) for 24 hours. Cell Counting Kit-8 (CCK-8) assay was used to determine the cell viability of RAW264.7 macrophages. The optimal concentration was chosen to establish an in vitro inflammation model induced by LPS. Cells were divided into a blank group (20% blank serum), a model group (20% blank serum + 10 mg·L-1 LPS), a model control group (20% FBS + 10 mg·L-1 LPS), low-, medium-, and high-dose (5%, 10%, and 20%) Buyang Huanwutang-containing serum groups, a high-dose (20%) Buyang Huanwutang combined with NLRP3 inhibitor MCC950 (50 μmol·L-1) group, a high-dose (20%) Buyang Huanwutang combined with reactive oxygen species (ROS) inhibitor NAC (10 μmol·L-1) group, and a high-dose (20%) Buyang Huanwutang combined with NF-κB inhibitor PDTC (10 μmol·L-1) group. Enzyme-linked immunosorbent assay (ELISA) was used to detect the expression of interleukin-1β (IL-1β), interleukin-18 (IL-18), and tumor necrosis factor-α (TNF-α) in RAW264.7 macrophages. Flow cytometry was employed to measure ROS levels in macrophages. Western blot was used to determine the protein expression of M1-type macrophage-related factors inducible nitric oxide synthase (iNOS) and TNF-α, M2-type macrophage-related factors arginase-1 (Arg-1) and interleukin-10 (IL-10), as well as the proteins in the TLR4/NF-κB/NLRP3 pathway. ResultCCK-8 results indicated that under 10 mg·L-1 LPS stimulation, RAW264.7 macrophages exhibited the highest cell viability (P<0.01). Compared with the blank group, the model group showed significantly increased levels of IL-1β, IL-18, and TNF-α (P<0.05,P<0.01), increased ROS expression (P<0.05,P<0.01), increased protein expression of M1-type macrophage factors iNOS and TNF-α (P<0.01), decreased protein expression of M2-type macrophage factors Arg-1 and IL-10 (P<0.05,P<0.01), and upregulated expression levels of TLR4, myeloid differentiation factor 88 (MyD88), phosphorylated inhibitor of NF-κB (p-IκB)/NF-κB inhibitor (IκB), phosphorylated NF-κB (p-NF-κB) p65/NF-κB p65, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and pro-Caspase-1 (P<0.05, P<0.01). Compared with the model group, all Buyang Huanwutang-treated groups and inhibitor groups significantly reduced levels of IL-1β, IL-18, and TNF-α (P<0.01), suppressed the expression of inflammatory factors in RAW264.7 macrophages, decreased cellular ROS expression levels (P<0.01), downregulated M1-type macrophages iNOS and TNF-α protein expression (P<0.01), upregulated M2-type macrophages Arg-1 and IL-10 protein expression (P<0.01), and lowered protein expression levels of TLR4, MyD88, p-IκB/IκB, p-NF-κB p65/NF-κB p65, NLRP3, ASC, and pro-Caspase-1 (P<0.05, P<0.01). ConclusionBuyang Huanwutang can improve macrophage inflammation, potentially by reducing macrophage ROS levels, inhibiting RAW264.7 macrophage polarization, and downregulating the protein expression levels of the TLR4/NF-κB/NLRP3 pathway.

SELECTION OF CITATIONS
SEARCH DETAIL